Interdiffusion Kinetics in the Mo₅SiB₂ (T₂) Phase

Sungtae Kim and John H. Perepezko

(Submitted April 6, 2006; in revised form August 17, 2006)

Diffusion couples based on Mo_2B and Mo_5Si_3 were used to determine the diffusion kinetics of T_2 phase development and the relative diffusivities controlling the kinetics. Annealing the Mo_2B/Mo_5Si_3 diffusion couple above 1600 °C yielded an initial diffusion path sequence of $Mo_2B/T_2/Mo_3Si/Mo_5Si_3$, which was subsequently transformed to $Mo_2B/T_2/(Mo_3Si + Mo_5Si_3)/Mo_5Si_3$ by shrinkage of the Mo_3Si phase upon long-term annealing. The T_2 phase developed from Mo_2B and during the growth of the T_2 phase, Si and B atom movements were driven by the Si concentration gradient. The activation energy for Si interdiffusion in the T_2 phase was evaluated to be 355 kJ/mole compared with about 300 kJ/mole for Mo_5Si_3 in both Mo/Si and $MoSi_2/T_2$ diffusion couples. The larger activation energy is mainly responsible for the 10^3 lower diffusivity for Si in the T_2 phase compared with Mo_5Si_3 . The relatively slow diffusion in the T_2 phase is consistent with the enhanced creep resistance exhibited by T_2 phase microstructures.

Keywords	activation energy, diffusion path, interdiffusion co-			
	efficient, intermetallic compound, Mo ₅ SiB ₂			

1. Introduction

The high melting temperature and oxidation resistance of the Mo_5SiB_2 (T_2) phase and multiphase microstructures incorporating the T_2 phase in the Mo-Si-B system are attractive for applications in very high temperature environments. An essential requirement of materials for high-temperature structural applications is the maintenance of microstructure. While there are certain microstructure designs that offer the most robust performance, it is evident that the endurance of any design is determined, to a large extent, by the magnitude and rate of diffusion-induced modifications. Accordingly, the determination and analysis of diffusion kinetics is of central importance in evaluating the structural stability of multiphase microstructures.

Electron probe microanalysis (EPMA) and x-ray diffraction (XRD) examinations of as-cast and rapidly solidified samples annealed for extended times have been applied to determine the phase stability of the Mo-rich Mo-Si-B system between 1600 and 1950 °C.^[1] Figure 1 shows the Mo-MoB-Mo₅Si₃ region of the phase diagram (excluding the two-phase equilibrium region of MoB-Mo₅Si₃) at 1600 °C, where the boundary lines are plotted on the basis of composition data for phases obtained using EPMA. The T_2 phase shows an appreciable compositional homogeneity range around the stoichiometric composition and is in equilibrium with Mo_{ss}, Mo₂B, MoB, Mo₃Si, and Mo₅Si₃.

Direct synthesis of the T_2 phase as a single phase from the melt is possible for certain compositions,^[2] but this type of sample offers limited opportunities to examine interdiffusion behavior. The T_2 phase does exhibit a stable equilibrium with a Mo solid solution, Mo(ss), as indicated in the isothermal section in Fig. 1, but there is no stable two-phase field between the T_2 phase and either B or Si. Instead, an effective sample design can be examined based on the synthesis of the T_2 phase as a reactive diffusion product between binary intermediate phase end members of a diffusion couple such as Mo₂B and Mo₅Si₃, as illustrated in Fig. 1.

The reactive silicide formation and interdiffusion in solid-solid diffusion couples that are assembled with molybdenum and molybdenum silicide have been studied extensively.^[3-7] In addition, Brandstötter et al.^[8] observed the formation of MoB and Mo₂B from an annealed Mo-B couple that was followed by pack boriding of Mo. Recently, Hayashi et al.^[9] evaluated the growth rate constants and interdiffusion coefficients of Mo₅Si₃ and Mo₅Si₃ + MoB layers that developed within the MoSi₂/Mo₅SiB₂ couples. The growth for both the Mo₅Si₃ and Mo₅Si₃ + MoB layers was parabolic with annealing time, and the growth rate constants were approximately equal to each other with a value of 1.3×10^{-9} cm²/s at 1600 °C. The average interdiffusion coefficient for Mo₅Si₃ formed in the MoSi₂/Mo₅SiB₂ diffusion couples was 4.1×10^{-9} cm²/s at 1600 °C, and the activation energy for interdiffusion in Mo₅Si₃ was determined to be about 300 kJ/mol. Ito et al.^[10] examined the evolution kinetics of Mo_5Si_3 in a $MoSi_2/Mo(ss) + Mo_5SiB_2$ diffusion couple. The average interdiffusion coefficient at 1500 °C was 1.2×10^{-9} cm²/s and the activation energy for interdiffusion in Mo₅Si₃ was estimated at 240 kJ/mol. Aside from a preliminary report by Kim et al.^[11] on the interdiffusion in the T₂ phase synthesized in Mo₂B/Mo₅Si₃ diffu-

This article was presented at the Multicomponent-Multiphase Diffusion Symposium in Honor of Mysore A. Dayananda, which was held during TMS 2006, 135th Annual Meeting and Exhibition, March 12-16, 2006, in San Antonio, TX. The symposium was organized by Yongho Sohn of University of Central Florida, Carelyn E. Campbell of National Institute of Standards and Technology, Richard D. Sisson, Jr., of Worcester Polytechnic Institute, and John E. Morral of Ohio State University.

Sungtae Kim and John H. Perepezko, Department of Materials Science and Engineering University of Wisconsin—Madison, 1509 University Ave., Madison, WI 53706. Contact e-mail: perepezk@ engr.wisc.edu.

Fig. 1 Ternary isotherm at 1600 °C of the Mo-rich Mo-Si-B system. Source: Ref 1

sion couples at 1600 °C, there have been no detailed studies of the diffusion kinetics in the T_2 phase. In the current work, the relative diffusivities and related diffusion kinetics of the product T_2 phase are evaluated between 1600 and 1800 °C from diffusion couples between binary boride and silicide phases.

2. Experimental Methods

Mo₂B and Mo₅Si₃ alloys were prepared by repetitive arc melting of pure Mo and B, and pure Mo and Si in an atmosphere of high-purity (oxygen gettered) argon and homogenized at 1600 °C for 150 h. To obtain smooth surfaces, ingots were sectioned into 2 to 3 mm thick slices, ground with Al_2O_3 powder (<5 µm), and then rinsed with methyl alcohol in an ultrasonic cleaner and dried. A diffusion couple was assembled from Mo2B and Mo5Si3 slices and wrapped with a Ta foil. The diffusion couples were annealed at 1600 °C under an argon atmosphere, and at 1700 and 1800 °C under high vacuum (10^{-3} to 10^{-5} Pa), respectively. The diffusion couples were cut perpendicular to the interface using a diamond-impregnated low-speed saw. Using an electron probe microanalysis (CAMECA SX50 EPMA, University of Wisconsin, Madison, WI), the compositions of diffusion couple sections were line scanned. EPMA analysis was carried out on the uncoated specimens at 7 kV and a beam current of 30 nA. This resulted in decreased electron penetration and x-ray generation closer to the surface, requiring a smaller absorption correction in the matrix correction. A serious interference problem of the first-order Mo M ζ (Mz) line with the first order B K α line was solved by a "Probe for Window" software.^[12]

3. Results and Discussion

3.1 Reactive Phase Formation in a Mo₂B/Mo₅Si₃ Diffusion Couple

Annealing the Mo_2B/Mo_5Si_3 diffusion couple resulted in the initial formation of the T_2 and Mo_3Si phases between Mo_2B and Mo_5Si_3 to develop the $Mo_2B/T_2/Mo_3Si/Mo_5Si_3$ (Fig. 2) diffusion pathway. To interpret the formation of T_2 and Mo_3Si by a thermally activated reaction between Mo_2B and Mo_5Si_3 , an estimate of the driving force for nucleation can provide useful insight. In the Mo-Si-B ternary phase diagram (Fig. 1), the stable phases at 1600 °C are Mo, Mo_2B , MoB, Mo_3Si , Mo_5Si_3 , and T_2 , where the free energies of formation of phases excluding T_2 were calculated from the published thermodynamic property data.^[13] Considering binary phases as line compounds, the unknown free energy of formation of T_2 was initially estimated by comparing the stability of each two-phase equilibrium field around the T_2 phase.

When determining the stability of a two-phase equilibrium field in a ternary system, the free energy of a set of selected two phases is compared with another set of selected two phases, where the two two-phase equilibrium fields cross each other. For instance, whether at 1600 °C the Mo₂B-Mo₅Si₃ two-phase field is more stable than the Mo-T₂ two-phase field is determined by calculating the freeenergy change (ΔG^{r}) of a reaction: $6Mo_{2}B + Mo_{5}Si_{3} \leftrightarrow$ 2Mo + 3T₂. When $\Delta G^{\rm r}$ (= $2\Delta G^{\rm o}_{\rm Mo}$ + $3\Delta G^{\rm o}_{\rm T_2}$ - $6\Delta G^{\rm o}_{\rm Mo_2B}$ - $\Delta G_{Mo_5Si_3}^{o}$ < 0, the Mo-T₂ two-phase field is more stable than the Mo₂B-Mo₅Si₃ two-phase field. When $\Delta G^{r} > 0$, the Mo₂B-Mo₅Si₃ two-phase field is more stable than the Mo- T_2 two-phase field. When $\Delta G^r = 0$, the invariant Mo- T_2 -Mo₂B-Mo₅Si₃ four-phase equilibrium occurs. The existence of the stable Mo-T₂ two-phase equilibrium in Fig. 1 indicates that $\Delta G^{\rm r} < 0$, and consequently the free energy of formation of T₂ satisfies $\Delta G_{T_2}^o < (\frac{1}{3})(-2 \Delta G_{Mo}^o + 6 \Delta G_{Mo_2B}^o + \Delta G_{Mo_3Si_3}^o)$, resulting in $\Delta G_{T_2}^o < -129$ kJ/g-atom (= -1033 kJ/1 mol of T_2). In other words, at 1600 °C the Mo- T_2 two-phase equilibrium is more stable than the Mo₂B- Mo_5Si_3 two-phase equilibrium as long as $\Delta G_{T_2}^o < -129$ kJ/ g-atom. There are additional chemical reactions that can be used to determine the free energy of formation of T₂:

$Mo_3Si + 2MoB \leftrightarrow T_2$	$\Delta G_{T_2}^{o} < -126 \text{ kJ/g-atom}$
$2Mo_2B + Mo_5Si_3 \leftrightarrow 2Mo + T_2$	$\Delta G_{T_2}^{o^2} < -130 \text{ kJ/g-atom}$
$7T_2 + 4MoSi_2 \leftrightarrow 14MoB$	$\Delta G_{T_2}^{o^2} > -132 \text{ kJ/g-atom}$
$+ 5Mo_5Si_3$	-

Based on these chemical reactions, bounds on the free energy of formation for T_2 were established that allowed for an estimated value of -131 ± 1 kJ/g-atom.

In a ternary system, the chemical potential of constituent element *i* (*i* = 1, 2, and 3) in an arbitrary α -phase, μ_i^{α} , is described as:^[14,15]

$$\mu_1^{\alpha} = G^{\alpha} + (1 - X_1^{\alpha}) \left(\frac{\partial G^{\alpha}}{\partial X_1} \right) - X_2^{\alpha} \left(\frac{\partial G^{\alpha}}{\partial X_2} \right)$$
(Eq 1a)

Fig. 2 BSE images of cross sections of the Mo_2B/Mo_5Si_3 diffusion couples heat-treated (a) at 1600 °C for 805 h, (b) 1700 °C for 182 h, and (c) 1800 °C for 100 h

$$\mu_2^{\alpha} = G^{\alpha} - X_1^{\alpha} \left(\frac{\partial G^{\alpha}}{\partial X_1} \right) + (1 - X_2^{\alpha}) \left(\frac{\partial G^{\alpha}}{\partial X_2} \right)$$
(Eq 1b)

$$\mu_3^{\alpha} = G^{\alpha} - X_1^{\alpha} \left(\frac{\partial G^{\alpha}}{\partial X_1} \right) - X_2^{\alpha} \left(\frac{\partial G^{\alpha}}{\partial X_2} \right)$$
(Eq 1c)

$$G^{\alpha} = X_{1}^{\alpha} \mu_{1}^{\alpha} + X_{2}^{\alpha} \mu_{2}^{\alpha} + X_{3}^{\alpha} \mu_{3}^{\alpha}$$
(Eq 2)

where X_i is the mole fraction of *i*, G^{α} is the free energy of

the α phase at composition $X_i = X_i^{\alpha}$, and $(\partial G^{\alpha}/\partial X_i)$ is the free-energy gradient of the α phase with respect to X_i at composition $X_i = X_i^{\alpha}$. Figure 1 shows negligible solubility of Si in Mo₂B and B in Mo₅Si₃, meaning that the freeenergy gradient of Mo₂B with respect to the Si mole fraction and the free-energy gradient of Mo₅Si₃ with respect to the B mole fraction may be negligible. In this regard, Eq 1 leads to $\mu_{S_{i_3}}^{M_{0_2}B} \approx \mu_{M_0}^{M_{0_2}B}$ due to $(\partial G^{M_{0_2}B}/\partial X_{S_i}) \approx 0$ for $M_{0_2}B$, and $\mu_B^{M_{0_5}S_{i_3}} \approx \mu_{M_0}^{M_{0_5}S_{i_3}}$ due to $(\partial G^{M_{0_5}S_{i_3}}/\partial X_B) \approx 0$ for $M_{0_5}S_{i_3}$. For Mo₂B, the chemical potentials of Mo and B can be determined by two common tangents between Mo₂B and Mo, and Mo₂B and MoB, so that the chemical potentials of Mo and Si can have values in a range between -118 and -103 kJ/g-atom, and the chemical potential of B can have a value in a range between -166 and -136 kJ/g-atom. From these bounds Eq 2 indicates that on a tangent plane to the Mo_2B phase free-energy surface, the free energy is $-121 \pm$ 2 kJ/g-atom at the T_2 phase stoichiometric composition. For Mo₅Si₃, the chemical potentials of Mo and Si can be determined by two common tangents between Mo₅Si₃ and Mo₃Si, and Mo₅Si₃ and MoSi₂, so the chemical potentials of Mo and B can have values in a range between -140 and -109 kJ/g-atom, and the chemical potential of Si can have a value in a range between -177 and -125 kJ/g-atom. Similarly, Eq 2 indicates that on a tangent plane to the Mo₅Si₃ phase free-energy surface the free energy is -128 ± 10 kJ/g-atom at the stoichiometric T₂ composition. From the estimated free energy of formation of the stoichiometric T_2 phase, the parallel tangents method^[16,17] allows for an initial estimate of the driving force for nucleation of T₂ in Mo₂B at about 10 kJ/g-atom and in Mo₅Si₃ at about 3 kJ/g-atom.

For competitive phase formation the favored phase is determined by the phase with the highest nucleation rate. The nucleation rate is established mainly by the activation barrier for nucleation, ΔG^* . Since:

$$\Delta G^* \propto \sigma^3 / \Delta G_{\rm N}^{2} \tag{Eq 3}$$

where σ is the interfacial energy between the nucleating phase and the parent structure, it is evident that the phase with the largest value of the driving force for nucleation $(\Delta G_{\rm N})$ is at an advantage to have the lowest ΔG^* value and highest nucleation rate provided the σ values for the competing phases are similar. Since detailed measurements of the relevant σ values are often not available and calculated values are normally not of high reliability, an evaluation of nucleation phase selection based on $\Delta G_{\rm N}$ values can be a useful approximation when the limitations noted above are considered. Therefore, the nucleation of the T_2 phase is favored to occur in the Mo₂B phase by Si atom movements from Mo₅Si₃ to Mo₂B. Parallel with the T₂ phase nucleation on the favored Mo₂B side in the Mo₂B/Mo₅Si₃ diffusion couple, the Mo₃Si phase forms on the Mo₅Si₃ side, because Si atom movements to the Mo₂B side requires dissociation of Mo₅Si₃ into Mo₃Si and Si. Consequently, the Mo₂B/ Mo₅Si₃ diffusion couple is considered to initially develop the phase sequence of Mo₂B/T₂/Mo₃Si/Mo₅Si₃ that agrees with the observed phase development sequence.

Fig. 3 Phase diagram showing (a) the $Mo_2B/T_2/Mo_3Si/Mo_5Si_3$ and $Mo_2B/T_2/Mo_5Si_3$ diffusion paths and (b) the $Mo_2B/T_2/(Mo_3Si + Mo_5Si_3)/Mo_5Si_3$ diffusion path. Schematic diagrams represent the (c) $Mo_2B/T_2/Mo_3Si/Mo_5Si_3$, (d) $Mo_2B/T_2/Mo_5Si_3$, and (e) $Mo_2B/T_2/(Mo_3Si + Mo_5Si_3)/Mo_5Si_3$ diffusion paths.

3.2 Diffusion Pathway Transition

A diffusion pathway is a representation of the relative component fluxes in a diffusion couple within a given sequence of phases. The initial sequence is established by the relative nucleation kinetics of the coexisting phases. In the Mo_2B/Mo_5Si_3 diffusion couple the initial formation of the T_2 phase in the Mo_2B layer requires Si from the Mo_5Si_3 phase. The depletion of Si results in a Mo_5Si_3 phase with a Mo supersaturation that is favorable for the nucleation and initial growth of the Mo_3Si phase. The long-term or steadystate pathway is determined by the relative magnitudes of the component fluxes between each of the phases.

Following long-term annealing at 1600 °C for 805 h in some local regions of the Mo_2B/Mo_5Si_3 diffusion couple an apparent layer sequence of $Mo_2B/T_2/Mo_5Si_3$ was observed (i.e., without Mo_3Si) as indicated in Fig. 2(a1). However, as illustrated in Fig. 3(a) this layer sequence cannot be a valid diffusion pathway since it does not satisfy mass balance.

Instead, the layer arrangement in Fig. 2(a2) where the Mo₃Si phase was observed at the T₂/Mo₅Si₃ interface in other local regions is representative of the diffusion pathway (Fig. 3b). In this case, an interface formed between a single-phase (T_2) layer and a two-phase $(Mo_3Si + Mo_5Si_3)$ layer. The diffusion pathways are schematically represented by the cross-section diagrams of annealed diffusion couples (Fig. 3c and d). Clark^[18] noted that the interface for a single-phase layer adjacent to a two-phase layer represents an equilibrium between three phases. In this regard, longterm annealing at 1600 °C yields the Mo₂B/T₂/(Mo₃Si + Mo₅Si₃)/Mo₅Si₃ diffusion pathway (Fig. 3e), where a threephase equilibrium takes place at the $T_2/(Mo_3Si + Mo_5Si_3)$ interface. A schematic diagram of the developed phase sequence in the Mo₂B/Mo₅Si₃ diffusion couple is shown in Fig. 3(e). Due to the fact that a three-phase layer cannot form in a ternary diffusion couple,^[18] the $T_2 + Mo_3Si +$ Mo₅Si₃ three-phase equilibrium layer is not drawn in Fig. 3(e) and a diffusion path in the $T_2 + Mo_3Si + Mo_5Si_3$

Fig. 4 Measured thickness of T_2 and Mo_3Si phases versus annealing time for a Mo_2B/Mo_5Si_3 diffusion couple annealed at 1600 °C

three-phase field is dotted in Fig. 3(b). In addition, layer growth of Mo_3Si at 1600 °C exhibits a maximum in layer growth thickness (Fig. 4), while the T_2 phase continuously grows with time. The reduction of the Mo_3Si layer thickness with extended heat treatment is further evidence that the $Mo_2B/T_2/Mo_3Si/Mo_5Si_3$ diffusion pathway is not a steady-state path, but rather reflects transient conditions (Fig. 3a).

3.3 Interdiffusion Behavior of T₂

Dayananda^[19,20] developed an analysis method to determine the average interdiffusion coefficients for a phase from a single diffusion couple experiment in a multicomponent system. The average interdiffusion coefficients in a ternary system are defined as:

$$\int_{i}^{C_{i}^{0}} (x - x_{0})^{2} dC_{i}
\frac{C_{i}^{+}}{2t(C_{i}^{0} - C_{i}^{+})} = \overline{\tilde{D}_{ii}^{n}} + \overline{\tilde{D}_{ij}^{n}} \frac{(C_{j}^{+} - C_{j}^{0})}{(C_{i}^{+} - C_{i}^{0})}
\int_{i}^{C_{i}^{-}} (x - x_{0})^{2} dC_{i}
\frac{C_{i}^{0}}{2t(C_{i}^{-} - C_{i}^{0})} = \overline{\tilde{D}_{ii}^{n}} + \overline{\tilde{D}_{ij}^{n}} \frac{(C_{j}^{0} - C_{j}^{-})}{(C_{i}^{0} - C_{i}^{-})}$$
(Eq 4)

where $(x - x_0)$ is relative distance with respect to the Matano plane at $x = x_0$, and *t* is annealing time. C_i^0 , C_i^+ , and C_i^- are concentrations of component *i* at $x = x_0$, $x = +\infty$, and $x = -\infty$, respectively. $\overline{\tilde{D}_{ii}^n}$ and $\overline{\tilde{D}_{ij}^n}$ are the average interdiffusion coefficients over a selected composition range of the diffusion zone. In a ternary system, Eq 4 becomes a system of two equations in two unknowns, $\overline{\tilde{D}_{ii}^n}$ and $\overline{\tilde{D}_{ij}^n}$. To have two solutions, Eq 4 should be independent, meaning that the requirements in Eq 5 should be satisfied:

Fig. 5 Concentration profiles of Si and B obtained from EPMA measurements on the Mo_2B/Mo_5Si_3 diffusion couple annealed at 1600 °C for 805 h. Concentrations are expressed as g-atom/cm³ through the use of molar volumes of all identified phases (7.32 cm³/g-atom for Mo_2B , 7.70 cm³/g-atom for T_2 , 8.81 cm³/g-atom for Mo_3Si_3 , and 8.54 cm³/g-atom for Mo_5Si_3). Solid and dotted smooth lines are drawn by numerically fitting a polynomial equation on concentration profile data.

$$\frac{(C_j^+ - C_j^0)}{(C_i^+ - C_i^0)} \neq \frac{(C_j^0 - C_j^-)}{(C_i^0 - C_i^-)} \text{ and } \frac{\sum_{i=1}^{C_i^0} (x - x_0)^2 dC_i}{2t(C_i^0 - C_i^+)} \neq \frac{\sum_{i=1}^{C_i^0} (x - x_0)^2 dC_i}{2t(C_i^- - C_i^0)}$$
(Eq 5)

The present diffusion couples exhibit the formation of multiple phases between terminal alloys so that the concentration profiles are not symmetric across the Matano plane. Asymmetric concentration profiles and multiple phase formation indicate that the Matano plane is not located in the middle of the T_2 phase region. In this case the diffusion profiles satisfy the above two requirements in Eq 5.

In a multicomponent system, the flux of a component depends not only on its own concentration gradient, but also on the concentration gradients of all other components in the system. In an *n*-component system an $(n - 1) \times (n - 1)$ square diffusivity matrix fully describes the dependence of the diffusion flux on the concentration gradients of all the components. The diffusion flux in the Mo-Si-B ternary system, therefore, depends on four independent interdiffusion coefficients, and can be expressed with the Fick's first law as:

$$\begin{split} \tilde{J}_{\rm Si} &= -\tilde{D}_{\rm SiSi}^{\rm Mo} \nabla C_{\rm Si} - \tilde{D}_{\rm SiB}^{\rm Mo} \nabla C_{\rm B} \\ \tilde{J}_{\rm B} &= -\tilde{D}_{\rm BSi}^{\rm Mo} \nabla C_{\rm Si} - \tilde{D}_{\rm BB}^{\rm Mo} \nabla C_{\rm B} \end{split} \tag{Eq.6}$$

where \tilde{J}_i is the interdiffusion flux of component *i* (*i* = Si or B), $\tilde{D}_{ij}^{\text{Mo}}$ is the interdiffusion coefficient (*j* = Si or B), and ∇C_j is the concentration gradient of component *j*. Concentration profiles of Si and B (Fig. 5) were obtained from EPMA measurements over the diffusion reaction zone between the Mo₂B and Mo₅Si₃ phases. Based on Eq 4 and the

Fig. 6 Arrhenius plot of the integrated interdiffusion coefficients versus reciprocal temperature to indicate the activation energy for each $\tilde{D}_{i}^{\text{int}}$, (*i* = Mo, Si, and B). Due to negative values of $\tilde{D}_{Si}^{\text{int}}$, their absolute values were used in the plots to determine the activation energy for the *i* integrated interdiffusion Q_{i}^{int} : Q_{Mo}^{int} = 439 kJ/mol, Q_{Si}^{int} = 355 kJ/mol, and Q_{B}^{int} = 338 kJ/mol.

concentration profiles of Si and B, four independent average interdiffusion coefficients are estimated. The T₂ phase that developed in the Mo₂B/Mo₅Si₃ diffusion couples exhibits only small concentration changes of Si and B (≤ 2 at.%) elements, indicating that the interdiffusion coefficients are approximately constant. Consequently, the estimated average interdiffusion coefficients should represent closely the interdiffusion coefficients of the T₂ phase. In this regard, the interdiffusion coefficients for the T2 phase were determined from the Mo2B/Mo5Si3 diffusion couples annealed between 1600 and 1800 °C and are listed in Table 1. It is worthy to note that the estimated values of $\tilde{D}_{\rm SiSi}^{\rm Mo}$ and $\tilde{D}_{\rm SiB}^{\rm Mo}$ are positive, and $\tilde{D}_{\rm BSi}^{\rm Mo}$ and $\tilde{D}_{\rm BB}^{\rm Mo}$ exhibit negative values. Positive $\tilde{D}_{\rm SiSi}^{\rm Mo}$ and $\tilde{D}_{\rm SiB}^{\rm Mo}$ values indicate that the Si concentration gradient drives Si atoms to flow in a direction of decreasing Si concentration, while the B concentration gradient drives Si atoms to flow in an opposite direction. The Si concentration profile (Fig. 5) shows that the Si net flow occurs in the

Table 1 Interdiffusion coefficients for the T_2 phase, estimated from the Mo_2B/Mo_5Si_3 diffusion couples annealed in ranges of 1600 to 1800 °C

Temperature, °C	${ ilde D}_{{ m SiSi}}^{{ m Mo}}, { m 10}^{-11}~{ m cm}^2/{ m s}$	$ ilde{D}_{ m SiB}^{ m Mo}, \\ 10^{-11} \ { m cm}^2/{ m s}$	$ ilde{D}_{ m BSi}^{ m Mo}, \\ 10^{-11} \ { m cm}^2/{ m s}$	$ ilde{D}_{ m BB}^{ m Mo}, \\ 10^{-11} { m cm}^2/{ m s}$
1600	6.1 ± 0.7	6.8 ± 0.6	-3.9 ± 0.5	-4.2 ± 0.4
1700	6.7 ± 0.6	4.4 ± 1.2	-3.5 ± 0.4	-1.8 ± 0.4
1800	62.2 ± 2.0	76.8 ± 1.4	-47.3 ± 2.9	-58.1 ± 3.1

direction of negative Si concentration gradient. This indicates that the Si concentration gradient plays a key role in driving Si atom movement. Negative $\tilde{D}_{\rm BSi}^{\rm Mo}$ and $\tilde{D}_{\rm BB}^{\rm Mo}$ indicate that the Si concentration gradient drives B atoms to flow in a direction that the Si concentration increases, and the B concentration gradient drives B atoms to flow in a direction that the B concentration increases. The B concentration profile (Fig. 5) shows that B net flow occurs down the B concentration gradient. This indicates that the Si concentration gradient also plays a key role in driving B atom movement. Consequently, the Si and B diffusion behaviors reflect that Si and B atom movements in the T₂ phase are mainly controlled by the Si concentration gradient driving force.

When a compound with narrow homogeneity range develops in a diffusion couple, the concentration gradient cannot be identified so that it is impossible to determine the interdiffusion coefficient. In this regard, the integrated interdiffusion coefficient of Si, $\tilde{D}_{\mathrm{Si},\Delta C}^{\mathrm{int}}$, is introduced that relates the interdiffusion coefficient to the interdiffusion flux.^[19,20]

$$\tilde{D}_{\mathrm{Si},\Delta C}^{\mathrm{int}} = \overline{\tilde{D}_{\mathrm{Si}}(\mathrm{T}_2)} \Delta C_{\mathrm{Si}} = \int_{x_1}^{x_2} \tilde{J}_{\mathrm{Si}}(x) \, dx \tag{Eq 7}$$

where x_1 and x_2 are the relative distances from an arbitrary plane of reference, corresponding to boundary compositions of a T₂ phase composition range in the concentration profiles, and $J_{Si}(x)$ is the interdiffusion flux, ΔC_{Si} is difference <u>between</u> the Si concentrations at $x = x_2$ and $x = x_1$, and $D_{\rm Si}(T_2)$ represents the average effective interdiffusion coefficient of Si over the T2 phase composition range. To compare the diffusion behavior of the T₂ phase with that observed for the Mo₅Si₃ phase, the integrated interdiffusion coefficients for the T₂ phase have been determined. Tortorici et al.^[7] found the activation energy for integrated interdiffusion in MoSi₂ to be 130 ± 20 kJ/mol and that for Mo_5Si_3 to be 210 ± 10 kJ/mol in the Mo/Si diffusion couples annealed at 900 to 1350 °C. Their estimated integrated interdiffusion coefficient for the Mo₅Si₃ phase was 2.3 to 2.6×10^{-11} cm²/s at 1350 °C. Based on the integrated interdiffusion coefficients at different temperatures, the prefactor was estimated at 1.3×10^{-4} cm²/s so that the integrated interdiffusion coefficient at 1600 °C was evalu-ated to be 1.8×10^{-10} cm²/s. Ito et al.^[10] examined the evolution kinetics of Mo_5Si_3 in the $MoSi_2/Mo(ss)$ + Mo₅SiB₂ diffusion couples that were annealed in ranges of 1300 to 1500 °C. The prefactor was determined to be $1.2 \times$

	87 20 8			
	1600 °C	1700 °C	1800 °C	Q_i , kJ/mol
$\tilde{D}_{\mathrm{B},\Delta C}^{\mathrm{int}}, \mathrm{cm}^2/\mathrm{s}$	$(1.3 \pm 0.3) \times 10^{-13}$	$(3.5 \pm 0.2) \times 10^{-13}$	$(1.0 \pm 0.2) \times 10^{-12}$	338
$\tilde{D}_{\mathrm{Si},\Delta C}^{\mathrm{int}}, \mathrm{cm}^2/\mathrm{s}$	$(-1.7 \pm 0.1) \times 10^{-13}$	$(-4.9 \pm 0.3) \times 10^{-13}$	$(-1.5 \pm 0.2) \times 10^{-12}$	355
$\tilde{D}_{Mo,\Delta C}^{int}$, cm ² /s	$(3.5 \pm 2.0) \times 10^{-14}$	$(1.4 \pm 0.1) \times 10^{-13}$	$(4.6 \pm 1.5) \times 10^{-13}$	439

Table 2 Integrated interdiffusion coefficients of *i* (*i* = B, Si, Mo) for the T₂ phase in ranges of 1600 to 1800 °C and the activation energy, Q_{i} , for *i* integrated interdiffusion

 10^{-3} cm²/s, and the activation energy for integrated interdiffusion in Mo₅Si₃ was estimated at 240 kJ/mol. The evaluated integrated interdiffusion coefficient at 1600 °C was 2.4 $\times 10^{-10}$ cm²/s. Hayashi et al.^[9] recently estimated the activation energy for integrated interdiffusion of Mo₅Si₃ in the MoSi₂/T₂ diffusion couple at about 300 kJ/mol, and the integrated interdiffusion coefficient for Mo_5Si_3 was 3.1 × 10^{-10} cm²/s at 1600 °C. The estimated interdiffusion coefficients for the T₂ phase in the current study are listed in Table 2, in which the integrated interdiffusion coefficients of B, Si, and Mo at 1600 °C are 1.3×10^{-13} cm²/s, -1.7×10^{-13} cm²/s, and 3.5×10^{-14} cm²/s, respectively (Fig. 6). The activation energies for Mo, Si, and B integrated interdiffusions are 439, 355, and 338 kJ/mol, respectively. Table 2 reveals that the integrated interdiffusion coefficient of Si in the T₂ phase is smaller by about three orders of magnitude than that for the Mo₅Si₃ phase. The activation energies for integrated interdiffusion of Si for the T₂ phase is 355 kJ/mol, that is, larger by 56 kJ/mol than that^[9] for the Mo₅Si₃ phase. The 10³ difference between the integrated interdiffusion coefficients of Si for the T₂ and Mo₅Si₃ phases appears to mainly originate from differences in the activation energy because $\exp(-\Delta Q/RT) = 2.7 \times 10^{-2}$ at 1600 °C.

Another factor for the difference in the integrated interdiffusion coefficient can be identified in the correlation effect that is related to the atomic jump process by a vacancy mechanism. In general, successive jumps of an atom by the vacancy mechanism tend to have displacements in opposite directions, meaning that an atom having exchanged with a vacancy has a better than random chance of the reverse jump. The correlation effect depends significantly on the crystal structure and the anisotropic jump frequency. The SEM-BSE images in Fig. 2 show that microstructure of the T_2 phase is columnar. A TEM analysis^[11] revealed that the T_2 phase synthesized in the Mo₂B/Mo₅Si₃ diffusion couple grows perpendicular to the tetragonal axis. The tetragonal T_2 phase, as shown in Fig. 7, also reveals the highly ordered $D8_1$ structure, consisting of three different types of layers:^[21,22] Mo layer (A layer), Mo + B layer (B layer), and Si layer (C layer). The T2 structure is constructed in a stacking arrangement involving successive layers of:

$$\dots$$
 BACA_{1/21/2}BA_{1/21/2}CABACA_{1/21/2}BA_{1/21/2}CA \dots

along the tetragonal axis, where the $A_{1/21/2}$ layer refers to the A layer that has been translated by half the base diagonal relative to neighboring layers. This indicates that atom diffusion in the T₂ phase occurs perpendicular to the tetragonal axis and along the layer plane, meaning that diffusion in the T₂ phase is highly anisotropic. For the anisotropic MoSi₂ phase Salamon et al.^[23] and Divinski et al.^[24] reported Si and Mo diffuse independently on their own sublattices. In addition, the anisotropy ratio $(D_{\perp}/D_{\parallel})$ of the self-diffusion coefficients perpendicular (\perp) and parallel (\parallel), respectively, to the tetragonal axis varied between 10 and 100. The reduced correlation factor in a crystal structure revealing the anisotropic diffusion behavior can also contribute to a low diffusivity for the T₂ phase.

A closer inspection of the structure of Mo₅Si₃ in Fig. 7 reveals both Mo and Si sublattice sites, where an atom occupying the Mo sublattice site in Mo₅Si₃ is surrounded by Mo and/or Si species atoms, and an atom on the Si sublattice site is surrounded by Mo and/or Si species atoms. However, the T₂ phase is constructed by four different Mo_I, Mo_{II}, Si, and B sublattice sites.^[21] Whenever an atom substitutionally jumps to an adjacent site, it is surrounded by one of four different configurations of Mo, Si, and B atoms and vacancies that limit the jump options. Moreover, based on the lattice parameters of T_2 (a = 0.601 nm and c = 1.103 nm) and Mo_5Si_3 (a = 0.962 nm and c = 0.49 nm), the packing efficiency was determined to be 67% for the T₂ phase and 63% for the Mo₅Si₃ phase. As a result, an atom or vacancy in the T₂ phase is surrounded by more complex and denserpacked neighboring configurations than in the Mo₅Si₃ phase, but the influence of these conditions on the diffusion behavior requires further analysis.

The relatively slow diffusion in the T₂ phase is also consistent with the superior high-temperature creep resistance of T₂ phase based microstructures. For example, activation energies estimated from creep tests at similar flow stress levels were reported to be 399 kJ/mol for the Mo₅Si₃ phase,^[25,26] and 415 to 445 kJ/mol for the Mo(ss) + T₂ two-phase alloys.^[27] The creep rate of a multicomponent alloy is proportional to the interdiffusion coefficient:^[25,28] $\dot{\varepsilon} \propto D\sigma^n$, where $\dot{\varepsilon}$ is the creep rate, D is the interdiffusion coefficient, σ is the applied creep stress, and *n* is the creep stress exponent. As long as the applied creep stress is constant, the creep strain rate is dependent on the interdiffusion coefficient. A high activation energy for interdiffusion decreases the interdiffusion coefficient that subsequently decreases the creep rate.

4. Summary

Diffusion couples consisting of binary boride and silicide phases have been used to determine the diffusion kinetics of T_2 phase development. Following diffusion anneals between 1600 and 1800 °C an initial diffusion pathway sequence of Mo₂B/T₂/Mo₃Si/Mo₅Si₃ developed, which was

Fig. 7 Crystal structure of the (a) T_2 and (b) Mo_5Si_3 phases, in which a gray sphere represents Mo atom, a white sphere represents Si atom and a black sphere represents B atom. Based on the lattice parameters (for T_2 : a = 0.601 nm and c = 1.103 nm; for Mo_5Si_3 : a = 0.962 nm and c = 0.49 nm), the packing efficiency was determined to be 67% for the T_2 phase and 63% for the Mo_5Si_3 phase.

subsequently transformed to Mo₂B/T₂/(Mo₃Si + Mo₅Si₃)/ Mo₅Si₃ by shrinkage of the Mo₃Si phase on long-term annealing. During the growth of T₂, Si, and B atom movements were driven by the Si concentration gradient. The measured integrated interdiffusion coefficients at 1600 °C in the T₂ phase are 1.3×10^{-13} cm²/s, -1.7×10^{-13} cm²/s, and 3.5×10^{-14} cm²/s for B, Si, and Mo, respectively. The 10^3 smaller integrated interdiffusion coefficient for Si in T₂ compared with Mo₅Si₃ is mainly due to the larger activation energy for Si diffusion, but the observed anisotropic growth of the T₂ phase product layer also suggests a relatively small correlation coefficient.

Acknowledgments

The support of the AFOSR (FA9550-06-1-0233) is gratefully acknowledged. The authors would like to thank Dr. J. Fournelle for expert guidance with EPMA measurements. The authors appreciate valuable discussions with Professor Y.-H. Sohn of the University of Central Florida and Professor M. Dayananda of Purdue University and constructive guidance from the referee.

References

- 1. S. Kim and J. H. Perepezko, to be published
- K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi, Physical and Mechanical Properties of Single Crystals of the T₂ Phase in the Mo-Si-B System, *Intermetallics*, 2001, 9, p 591-602
- F. Christian, H. Sohma, T. Tanaka, H. Tanaka, K. Ohsasa, and T. Narita, Growth Rate Constant and Chemical Diffusivity in Silicides Mo₅Si₃ and Ta₅Si₃, *Mater. Trans. JIM*, 1998, **39**, p 286-291
- R.W. Bartlett, P.R. Gage, and P.A. Larssen, Growth Kinetics of Intermediate Silicides in the MoSi₂/Mo and WSi₂/W Systems, *Trans. TMS-AIME*, 1964, 230, p 1528-1534

- E. Fitzer and K. Matthias, On Silicon Diffusion in the Tetragonal and the Carbon-Stabilized Hexagonal Mo₅Si₃ Phase, *High Temp. Sci.*, 1971, **3**, p 93-98
- R.W. Bartlett, Kinetics of Ta₅Si₃ and Cb₅Si₃ Growth of Disilicide Coatings on Tantalum and Columbium, *Trans. TMS-AIME*, 1966, **236**, p 1230-1231
- P.C. Tortorici and M.A. Dayananda, Growth of Silicides and Interdiffusion in the Mo-Si System, *Metall. Mater. Trans. A*, 1999, **30A**, p 545-550
- J. Brandstötter and W. Lengauer, Multiphase Reaction Diffusion in Transition Metal-Boron Systems, *J. Alloy. Compd.*, 1997, 262-263, p 390-396
- T. Hayashi, K. Ito, and H. Numakura, Reaction Diffusion of MoSi₂ and Mo₅SiB₂, *Intermetallics*, 2005, **13**, p 93-100
- K. Ito, T. Hayashi, M. Yokobayashi, and H. Numakura, Evolution Kinetics and Microstructure of MoSi₂ and Mo₅Si₃ Surface Layers on Two-phase Mo-9Si-18B Alloy During Pack-cementation and High-temperature Oxidation, *Intermetallics*, 2004, **12**, p 407-415
- S. Kim, R. Sakidja, Z. Dong, J.H. Perepezko, and Y.W. Kim, Growth of the Mo₅SiB₂ Phase in a Mo₅Si₃/Mo₂B Diffusion Couple, *Mater. Res. Soc. Symp. Proc.*, 2001, 646, p N5.42.1-N5.42.6
- J.H. Fournelle, J.J. Donovan, S. Kim, and J.H. Perepezko, Analysis of Boron by EPMA: Correction for Dual Mo and Si Interferences for Phases in the Mo-Si-B System, *Inst. Phys. Conf. Ser.*, 2000, No. 165, p 425-426
- O. Kubaschewski, C.B. Alcock, and P.J. Spencer, *Materials Thermochemistry*, 6th ed., Pergamon Press, New York, 1993, p 257-323
- D.R. Gaskel, Introduction to Metallurgical Thermodynamics, 2nd ed., McGraw-Hill, New York, 1981
- 15. C.H.P. Lupis, *Chemical Thermodynamics of Materials*, Elsevier Science, New York, 1983
- C.V. Thompson and F. Spaepen, Homogeneous Crystal Nucleation in Binary Metallic Melts, *Acta Metall.*, 1983, 31, p 2021-2027
- 17. J.W. Christian, The Theory of Transformations in Metals and

Alloys, 1st ed., Pergamon Press, Oxford, UK, 1965, p 537-541

- J.B. Clark, Conventions for Plotting the Diffusion Paths in Multiphase Ternary Diffusion Couples on the Isothermal Section of a Ternary Phase Diagram, *TMS-AIME*, 1963, 227, p 1250-1251
- M.A. Dayananda, Average Effective Interdiffusion Coefficients and the Matano Plane Composition, *Metall. Mater. Trans. A*, 1996, **27A**, p 2504-2509
- M.A. Dayananda and Y.H. Sohn, A New Analysis for the Determination of Ternary Interdiffusion Coefficients from a Single Diffusion Couple, *Metall. Mater. Trans. A*, 1999, **30A**, p 535-543
- B. Aronsson, The Crystal Structure of Mo₅SiB₂, Acta Chem. Scand. A, 1958, **12**, p 31-37
- C.J. Rawn, J.H. Schneibel, C.M. Hoffmann, and C.R. Hubbard, The Crystal Structure and Thermal Expansion of Mo₅SiB₂, *Intermetallics*, 2001, 9, p 209-216
- 23. M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Riihimäki, S. Divinski, W. Frank, J. Räisänen, and H. Mehrer, Self-

Diffusion of Silicon in Molybdenum Disilicide, *Philos. Mag.*, 2004, **84**, p 737-756

- S. Divinski, M. Salamon, and H. Mehrer, Silicon Diffusion in Molybdenum Disilicide: Correlation Effects, *Philos. Mag.*, 2004, 84, p 757-772
- M.K. Meyer, M.J. Kramer, and M. Akinca, Compressive Creep Behavior of Mo₅Si₃ with the Addition of Boron, *Intermetallics*, 1996, 4, p 273-281
- M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Huebsch, and B. Cook, Boron-Doped Molybdenum Silicides for Structural Applications, *Mater. Sci. Eng. A*, 1999, A261, p 16-23
- A.P. Alur, N. Chollacoop, and K.S. Kumar, High-Temperature Compression Behavior of Mo-Si-B Alloys, *Acta Mater.*, 2004, 52, p 5571-5587
- K.L. Murty, F.A. Mohamed, and J.E. Dorn, Viscous Glide, Dislocation Climb and Newtonian Viscous Deformation Mechanisms of High Temperature Creep in Al-3Mg, *Acta Metall.*, 1972, 20, p 1009-1018